Obtain the line integral

Given `f=x^2z ds`


`x=cost, y=2t, z=sint `   for `0<=t<=\pi`


We have to find the line integral i.e.


`\int_{c} f(x,y,z)ds=\int_{c} x^2z ds`


                 = `\int_{c} f(x(t),y(t),z(t)). ||r'(t)|| dt`


where ,


`||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2+(\frac{dz}{dt})^2}`


          = `\sqrt{sin^2t+2^2+cos^2t}`


          = `\sqrt{1+4}`


          = `sqrt{5}`



Therefore we have,


`\int_{c}f(x,y,z)ds=\int_{0}^{\pi}cos^2tsint . \sqrt{5} dt`


                 = `\sqrt{5}\int_{0}^{\pi}cos^2tsint dt`


Take , `cost=u`, so `cos^2t=u^2`


Therefore,  `-sint dt=du`


When t=0, then u=1 and when 


         t= `\pi`, then u=-1


Hence we have,


`\int_{c}f(x,y,z)ds=\sqrt{5}\int_{1}^{-1}-u^2 du`


                ...

Given `f=x^2z ds`


`x=cost, y=2t, z=sint `   for `0<=t<=\pi`


We have to find the line integral i.e.


`\int_{c} f(x,y,z)ds=\int_{c} x^2z ds`


                 = `\int_{c} f(x(t),y(t),z(t)). ||r'(t)|| dt`


where ,


`||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2+(\frac{dz}{dt})^2}`


          = `\sqrt{sin^2t+2^2+cos^2t}`


          = `\sqrt{1+4}`


          = `sqrt{5}`



Therefore we have,


`\int_{c}f(x,y,z)ds=\int_{0}^{\pi}cos^2tsint . \sqrt{5} dt`


                 = `\sqrt{5}\int_{0}^{\pi}cos^2tsint dt`


Take , `cost=u`, so `cos^2t=u^2`


Therefore,  `-sint dt=du`


When t=0, then u=1 and when 


         t= `\pi`, then u=-1


Hence we have,


`\int_{c}f(x,y,z)ds=\sqrt{5}\int_{1}^{-1}-u^2 du`


                 `= \sqrt{5}\int_{-1}^{1}u^2du`


                  = `\sqrt{5}[\frac{u^3}{3}]_{-1}^{1}`


                  = `\frac{2\sqrt{5}}{3}`





(b)  Now we have the curve  `16y=x^4` `f(x,y)=16y-x^4` parameterized by  the curves 


  `x=2t, y=t^4 `  for `0<=t<=1`


We have to find the line integral :


`\int_{c} f(x,y) ds=\int_{c} xy ds`


               `=\int_{c} f(x(t),y(t))||r'(t)|| dt`


 where,


`||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}`


          `=\sqrt{2^2+(4t^3)^2}`


           = `\sqrt{4+16t^6}`


           = `2\sqrt{1+4t^6}`



Therefore we have,


`\int_{c} f(x,y) ds=\int_{0}^{1}2t^5. 2\sqrt{1+4t^6} dt`


               `=4\int_{0}^{1}t^5\sqrt{1+4t^6} dt`


Now take,


`\sqrt{1+4t^6}=u`


Therefore,


`\frac{1}{2\sqrt{1+4t^6}}.24t^5 dt=du`


i.e. `12t^5 dt=udu`


i.e. `t^5dt=\frac{u}{12} du`


When t=0, then u=1 and when


         t=1, then u= `\sqrt{5}`


Therefore we have,


`\int_{c} f(x,y)ds=4\int_{1}^{\sqrt{5}}\frac{u^2}{12} du`


               `=\int_{1}^{\sqrt{5}}\frac{u^2}{3} du`


                `=[\frac{u^3}{9}]_{1}^{\sqrt{5}}`


                 = `\frac{5\sqrt{5}-1}{9}` 


                 = 1.131             


No comments:

Post a Comment

What are the problems with Uganda&#39;s government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...