Given `f=x^2z ds`
`x=cost, y=2t, z=sint ` for `0<=t<=\pi`
We have to find the line integral i.e.
`\int_{c} f(x,y,z)ds=\int_{c} x^2z ds`
= `\int_{c} f(x(t),y(t),z(t)). ||r'(t)|| dt`
where ,
`||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2+(\frac{dz}{dt})^2}`
= `\sqrt{sin^2t+2^2+cos^2t}`
= `\sqrt{1+4}`
= `sqrt{5}`
Therefore we have,
`\int_{c}f(x,y,z)ds=\int_{0}^{\pi}cos^2tsint . \sqrt{5} dt`
= `\sqrt{5}\int_{0}^{\pi}cos^2tsint dt`
Take , `cost=u`, so `cos^2t=u^2`
Therefore, `-sint dt=du`
When t=0, then u=1 and when
t= `\pi`, then u=-1
Hence we have,
`\int_{c}f(x,y,z)ds=\sqrt{5}\int_{1}^{-1}-u^2 du`
...
Given `f=x^2z ds`
`x=cost, y=2t, z=sint ` for `0<=t<=\pi`
We have to find the line integral i.e.
`\int_{c} f(x,y,z)ds=\int_{c} x^2z ds`
= `\int_{c} f(x(t),y(t),z(t)). ||r'(t)|| dt`
where ,
`||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2+(\frac{dz}{dt})^2}`
= `\sqrt{sin^2t+2^2+cos^2t}`
= `\sqrt{1+4}`
= `sqrt{5}`
Therefore we have,
`\int_{c}f(x,y,z)ds=\int_{0}^{\pi}cos^2tsint . \sqrt{5} dt`
= `\sqrt{5}\int_{0}^{\pi}cos^2tsint dt`
Take , `cost=u`, so `cos^2t=u^2`
Therefore, `-sint dt=du`
When t=0, then u=1 and when
t= `\pi`, then u=-1
Hence we have,
`\int_{c}f(x,y,z)ds=\sqrt{5}\int_{1}^{-1}-u^2 du`
`= \sqrt{5}\int_{-1}^{1}u^2du`
= `\sqrt{5}[\frac{u^3}{3}]_{-1}^{1}`
= `\frac{2\sqrt{5}}{3}`
(b) Now we have the curve `16y=x^4` `f(x,y)=16y-x^4` parameterized by the curves
`x=2t, y=t^4 ` for `0<=t<=1`
We have to find the line integral :
`\int_{c} f(x,y) ds=\int_{c} xy ds`
`=\int_{c} f(x(t),y(t))||r'(t)|| dt`
where,
`||r'(t)||=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}`
`=\sqrt{2^2+(4t^3)^2}`
= `\sqrt{4+16t^6}`
= `2\sqrt{1+4t^6}`
Therefore we have,
`\int_{c} f(x,y) ds=\int_{0}^{1}2t^5. 2\sqrt{1+4t^6} dt`
`=4\int_{0}^{1}t^5\sqrt{1+4t^6} dt`
Now take,
`\sqrt{1+4t^6}=u`
Therefore,
`\frac{1}{2\sqrt{1+4t^6}}.24t^5 dt=du`
i.e. `12t^5 dt=udu`
i.e. `t^5dt=\frac{u}{12} du`
When t=0, then u=1 and when
t=1, then u= `\sqrt{5}`
Therefore we have,
`\int_{c} f(x,y)ds=4\int_{1}^{\sqrt{5}}\frac{u^2}{12} du`
`=\int_{1}^{\sqrt{5}}\frac{u^2}{3} du`
`=[\frac{u^3}{9}]_{1}^{\sqrt{5}}`
= `\frac{5\sqrt{5}-1}{9}`
= 1.131
No comments:
Post a Comment