`int (x^3 + x^2 + 2x + 1)/((x^2 + 1)(x^2 + 2)) dx` Evaluate the integral

`int (x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx`


To solve, apply partial fractions decomposition.


To express the integrand as sum of proper rational expressions, set the equation as follows: 


`(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) = (Ax+B)/(x^2+1)+(Cx+D)/(x^2+2)`


Multiply both sides by the LCD.


`x^3+x^2+2x+1=(Ax+B)(x^2+2)+(Cx+D)(x^2+1)`


`x^3+x^2+2x+1=Ax^3+2Ax+Bx^2+2B + Cx^3+Cx+Dx^2+D`


`x^3+x^2+2x+1=(A+C)x^3+(B+D)x^2+(2A+C)x+2B+D`


For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the polynomials equal to each other.


x^3:


`1=A+C `   (Let this be EQ1.)


x^2:


`1=B+D`     (Let...

`int (x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx`


To solve, apply partial fractions decomposition.


To express the integrand as sum of proper rational expressions, set the equation as follows: 


`(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) = (Ax+B)/(x^2+1)+(Cx+D)/(x^2+2)`


Multiply both sides by the LCD.


`x^3+x^2+2x+1=(Ax+B)(x^2+2)+(Cx+D)(x^2+1)`


`x^3+x^2+2x+1=Ax^3+2Ax+Bx^2+2B + Cx^3+Cx+Dx^2+D`


`x^3+x^2+2x+1=(A+C)x^3+(B+D)x^2+(2A+C)x+2B+D`


For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the polynomials equal to each other.


x^3:


`1=A+C `   (Let this be EQ1.)


x^2:


`1=B+D`     (Let this be EQ2.)


x:


`2=2A+C`     (Let this be EQ3.)


Constant:


`1=2B+D`     (Let this be EQ4.)


To solve for the values of A, B, C and D, isolate the C in EQ1.


`1=A+C`


`1-A=C`


Plug-in this to EQ3.


`2=2A+C`


`2=2A+1-A`


`2=A+1`


`1=A`


Plug-in the value of A to EQ1.


`1=A+C`


`1=1+C`


`0=C`


Also, isolate the D in EQ2.


`1=B+D`


`1-B=D`


Plug-in this to EQ4.


`1=2B+D`


`1=2B+1-B`


`1=B+1`


`0=B`


And plug-in the value of B to EQ2.


`1=B+D`


`1=0+D`


`1=D`


So the partial fraction decomposition of the integrand is:


`(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) = (1x+0)/(x^2+1)+(0x+1)/(x^2+2)=x/(x^2+1)+1/(x^2+2) `


Taking the integral of this result to:


`int(x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx`


`=int (x/(x^2+1) + 1/(x^2+2))dx`


`= int x/(x^2+1)dx + int 1/(x^2+2)dx`


For the first integral, apply u-substitution method.


     `u=x^2+1`


     `du=2xdx`


     `(du)/2=xdx`


`= int 1/u*(du/2) + int 1/(x^2+2)dx`


`=1/2 int 1/u du + int 1/(x^2+2)dx`


`= 1/2ln|u| + 1/sqrt2 tan^(-1) (x/sqrt2)+C`


And, substitute back `u = x^2+1` .


`=1/2ln |x^2+1|+1/sqrt2tan^(-1)(x/sqrt2)+C`



Therefore, `int (x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx=1/2ln |x^2+1|+1/sqrt2tan^(-1)(x/sqrt2)+C` .

No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...