`int (x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx`
To solve, apply partial fractions decomposition.
To express the integrand as sum of proper rational expressions, set the equation as follows:
`(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) = (Ax+B)/(x^2+1)+(Cx+D)/(x^2+2)`
Multiply both sides by the LCD.
`x^3+x^2+2x+1=(Ax+B)(x^2+2)+(Cx+D)(x^2+1)`
`x^3+x^2+2x+1=Ax^3+2Ax+Bx^2+2B + Cx^3+Cx+Dx^2+D`
`x^3+x^2+2x+1=(A+C)x^3+(B+D)x^2+(2A+C)x+2B+D`
For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the polynomials equal to each other.
x^3:
`1=A+C ` (Let this be EQ1.)
x^2:
`1=B+D` (Let...
`int (x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx`
To solve, apply partial fractions decomposition.
To express the integrand as sum of proper rational expressions, set the equation as follows:
`(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) = (Ax+B)/(x^2+1)+(Cx+D)/(x^2+2)`
Multiply both sides by the LCD.
`x^3+x^2+2x+1=(Ax+B)(x^2+2)+(Cx+D)(x^2+1)`
`x^3+x^2+2x+1=Ax^3+2Ax+Bx^2+2B + Cx^3+Cx+Dx^2+D`
`x^3+x^2+2x+1=(A+C)x^3+(B+D)x^2+(2A+C)x+2B+D`
For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the polynomials equal to each other.
x^3:
`1=A+C ` (Let this be EQ1.)
x^2:
`1=B+D` (Let this be EQ2.)
x:
`2=2A+C` (Let this be EQ3.)
Constant:
`1=2B+D` (Let this be EQ4.)
To solve for the values of A, B, C and D, isolate the C in EQ1.
`1=A+C`
`1-A=C`
Plug-in this to EQ3.
`2=2A+C`
`2=2A+1-A`
`2=A+1`
`1=A`
Plug-in the value of A to EQ1.
`1=A+C`
`1=1+C`
`0=C`
Also, isolate the D in EQ2.
`1=B+D`
`1-B=D`
Plug-in this to EQ4.
`1=2B+D`
`1=2B+1-B`
`1=B+1`
`0=B`
And plug-in the value of B to EQ2.
`1=B+D`
`1=0+D`
`1=D`
So the partial fraction decomposition of the integrand is:
`(x^3+x^2+2x+1)/((x^2+1)(x^2+2)) = (1x+0)/(x^2+1)+(0x+1)/(x^2+2)=x/(x^2+1)+1/(x^2+2) `
Taking the integral of this result to:
`int(x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx`
`=int (x/(x^2+1) + 1/(x^2+2))dx`
`= int x/(x^2+1)dx + int 1/(x^2+2)dx`
For the first integral, apply u-substitution method.
`u=x^2+1`
`du=2xdx`
`(du)/2=xdx`
`= int 1/u*(du/2) + int 1/(x^2+2)dx`
`=1/2 int 1/u du + int 1/(x^2+2)dx`
`= 1/2ln|u| + 1/sqrt2 tan^(-1) (x/sqrt2)+C`
And, substitute back `u = x^2+1` .
`=1/2ln |x^2+1|+1/sqrt2tan^(-1)(x/sqrt2)+C`
Therefore, `int (x^3+x^2+2x+1)/((x^2+1)(x^2+2))dx=1/2ln |x^2+1|+1/sqrt2tan^(-1)(x/sqrt2)+C` .
No comments:
Post a Comment