Integrate `int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`
Rewrite the rational function using partial fractions.
`(x^2-2x-1)/[(x-1)^2(x^2+1)]=A/(x-1)+B/(x-1)^2+(Cx+D)/(x^2+1)`
`x^2-2x-1=A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2`
`x^2-2x-1=A(x^3-x^2+x-1)+Bx^2+B+(Cx+D)(x^2-2x+1)`
`x^2-2x-1=Ax^3-Ax^2-Ax-A+Bx^2+B `
`+ Cx^3-2Cx^2+Cx+Dx^2-2Dx+D `
`x^2-2x-1=(A+C)x^3+(-A+B-2C+D)x^2 `
`+(A+C-2D)x+(-A+B+D)`
Equate coefficients and solve for A, B, C, and D.
`0=A+C`
`A=-C`
`-2=A+C-2D`
`-2=-C+C-2D`
`-2=-2D`
`D=1`
`1=-A+B-2C+D`
`1=C+B-2C+1`
`0=-1C+B`
`B=C `
`-1=-A+B+D`
`-1=C+B+1`
`-2=B+B`
`-2=2B`
`B=-1`
`C=-1`
`A=1`
`int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`
`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[(-1x+1)/(x^2+1)]dx`
`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[-x/(x^2+1)]dx+int[1/(x^2+1)]dx`
The first integral follows the pattern `int(du)/u=ln|u|+C`
` `
`int[1/(x-1)]dx=ln|x-1|+C`
Integrate the second integral using u-substitution.
...
Integrate `int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`
Rewrite the rational function using partial fractions.
`(x^2-2x-1)/[(x-1)^2(x^2+1)]=A/(x-1)+B/(x-1)^2+(Cx+D)/(x^2+1)`
`x^2-2x-1=A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2`
`x^2-2x-1=A(x^3-x^2+x-1)+Bx^2+B+(Cx+D)(x^2-2x+1)`
`x^2-2x-1=Ax^3-Ax^2-Ax-A+Bx^2+B `
`+ Cx^3-2Cx^2+Cx+Dx^2-2Dx+D `
`x^2-2x-1=(A+C)x^3+(-A+B-2C+D)x^2 `
`+(A+C-2D)x+(-A+B+D)`
Equate coefficients and solve for A, B, C, and D.
`0=A+C`
`A=-C`
`-2=A+C-2D`
`-2=-C+C-2D`
`-2=-2D`
`D=1`
`1=-A+B-2C+D`
`1=C+B-2C+1`
`0=-1C+B`
`B=C `
`-1=-A+B+D`
`-1=C+B+1`
`-2=B+B`
`-2=2B`
`B=-1`
`C=-1`
`A=1`
`int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`
`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[(-1x+1)/(x^2+1)]dx`
`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[-x/(x^2+1)]dx+int[1/(x^2+1)]dx`
The first integral follows the pattern `int(du)/u=ln|u|+C`
` `
`int[1/(x-1)]dx=ln|x-1|+C`
Integrate the second integral using u-substitution.
Let `u=x-1`
`(du)/(dx)=1`
`du=dx`
`-int1/(x-1)^2dx`
=`-intu^-2du`
`=1/u+C`
`1/(x-1)+C`
Integrate the third integral using u-subsitution.
Let `u=x^2+1`
` `
`(du)/(dx)=2x`
`(dx)=(du)/(2x)`
`-intx/(x^2+1)dx`
`=-int(x)/(u)*(du)/(2x)`
`=-1/2ln|u|+C`
`=-1/2ln|x^2+1|+C`
The fourth integral matches the pattern
`intdx/(x^2+a^2)=(1/a)tan^-1(x/a)+C`
`int1/(x^2+1)dx`
`=tan^-1(x)+C`
The final answer is:
`ln|x-1|+1/(x-1)-1/2ln|x^2+1|+tan^-1(x)+C`
No comments:
Post a Comment