`int (x^2 - 2x - 1)/((x - 1)^2(x^2 + 1)) dx` Evaluate the integral

Integrate `int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`


Rewrite the rational function using partial fractions.


`(x^2-2x-1)/[(x-1)^2(x^2+1)]=A/(x-1)+B/(x-1)^2+(Cx+D)/(x^2+1)` 


`x^2-2x-1=A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2`


`x^2-2x-1=A(x^3-x^2+x-1)+Bx^2+B+(Cx+D)(x^2-2x+1)`



`x^2-2x-1=Ax^3-Ax^2-Ax-A+Bx^2+B `


`+ Cx^3-2Cx^2+Cx+Dx^2-2Dx+D `



`x^2-2x-1=(A+C)x^3+(-A+B-2C+D)x^2 `


`+(A+C-2D)x+(-A+B+D)`



Equate coefficients and solve for A, B, C, and D.


`0=A+C`


`A=-C` 


`-2=A+C-2D`


`-2=-C+C-2D`


`-2=-2D`


`D=1`



`1=-A+B-2C+D`


`1=C+B-2C+1`


`0=-1C+B`


`B=C `



`-1=-A+B+D`


`-1=C+B+1`


`-2=B+B`


`-2=2B`


`B=-1`



`C=-1`



`A=1`



`int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`


`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[(-1x+1)/(x^2+1)]dx`


`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[-x/(x^2+1)]dx+int[1/(x^2+1)]dx`



The first integral follows the pattern `int(du)/u=ln|u|+C`


` `


`int[1/(x-1)]dx=ln|x-1|+C`



Integrate the second integral using u-substitution.


...

Integrate `int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`


Rewrite the rational function using partial fractions.


`(x^2-2x-1)/[(x-1)^2(x^2+1)]=A/(x-1)+B/(x-1)^2+(Cx+D)/(x^2+1)` 


`x^2-2x-1=A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2`


`x^2-2x-1=A(x^3-x^2+x-1)+Bx^2+B+(Cx+D)(x^2-2x+1)`



`x^2-2x-1=Ax^3-Ax^2-Ax-A+Bx^2+B `


`+ Cx^3-2Cx^2+Cx+Dx^2-2Dx+D `



`x^2-2x-1=(A+C)x^3+(-A+B-2C+D)x^2 `


`+(A+C-2D)x+(-A+B+D)`



Equate coefficients and solve for A, B, C, and D.


`0=A+C`


`A=-C` 


`-2=A+C-2D`


`-2=-C+C-2D`


`-2=-2D`


`D=1`



`1=-A+B-2C+D`


`1=C+B-2C+1`


`0=-1C+B`


`B=C `



`-1=-A+B+D`


`-1=C+B+1`


`-2=B+B`


`-2=2B`


`B=-1`



`C=-1`



`A=1`



`int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx`


`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[(-1x+1)/(x^2+1)]dx`


`=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[-x/(x^2+1)]dx+int[1/(x^2+1)]dx`



The first integral follows the pattern `int(du)/u=ln|u|+C`


` `


`int[1/(x-1)]dx=ln|x-1|+C`



Integrate the second integral using u-substitution.


Let `u=x-1`


`(du)/(dx)=1`


`du=dx`


`-int1/(x-1)^2dx`


=`-intu^-2du`


`=1/u+C`


`1/(x-1)+C`



Integrate the third integral using u-subsitution.


Let `u=x^2+1`


` `


`(du)/(dx)=2x`


`(dx)=(du)/(2x)`


`-intx/(x^2+1)dx`


`=-int(x)/(u)*(du)/(2x)`


`=-1/2ln|u|+C`


`=-1/2ln|x^2+1|+C`



The fourth integral matches the pattern


 `intdx/(x^2+a^2)=(1/a)tan^-1(x/a)+C`


`int1/(x^2+1)dx`


`=tan^-1(x)+C`



The final answer is:


`ln|x-1|+1/(x-1)-1/2ln|x^2+1|+tan^-1(x)+C`





No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...