`int (sqrt(x)/(sqrt(x) - 3)) dx` Find the indefinite integral by u substitution. (let u be the denominator of the integral)

To apply u-substitution , we let `u = sqrt(x)-3` .


Then  ` du = 1/(2sqrt(x) dx` .


Rearrange  `du = 1/(2sqrt(x)) dx` into `dx =2sqrt(x) du`


Substituting `dx=2sqrt(x) du` and `u =sqrt(x)-3` :


`int sqrt(x)/(sqrt(x)-3)dx = int sqrt(x)/u*2sqrt(x) dx`        


Simplify: `sqrt(x)*sqrt(x) = x`


`int sqrt(x)/u *2sqrt(x) du = int (2x)/u du`


Rearrange `u=sqrt(x)-3` into `sqrt(x)=u+3`


Squaring both sides of`sqrt(x)=u+3` then


`x=u^2+6u+9`


`int (2x)/u du = 2 int (u^2+6u+9)/u du`


   ...

To apply u-substitution , we let `u = sqrt(x)-3` .


Then  ` du = 1/(2sqrt(x) dx` .


Rearrange  `du = 1/(2sqrt(x)) dx` into `dx =2sqrt(x) du`


Substituting `dx=2sqrt(x) du` and `u =sqrt(x)-3` :


`int sqrt(x)/(sqrt(x)-3)dx = int sqrt(x)/u*2sqrt(x) dx`        


Simplify: `sqrt(x)*sqrt(x) = x`


`int sqrt(x)/u *2sqrt(x) du = int (2x)/u du`


Rearrange `u=sqrt(x)-3` into `sqrt(x)=u+3`


Squaring both sides of`sqrt(x)=u+3` then


`x=u^2+6u+9`


`int (2x)/u du = 2 int (u^2+6u+9)/u du`


                   `= 2 int (u^2/u + 6u/u + 9/u) du`


                   `= 2 int (u + 6 + 9/u) du `


                   `=2 *(u^2/2+6u+9lnabs|u|) +C`


  Substitute u =sqrt(x)-3:


`2 *(u^2/2+6u+9ln|u|)+C =2 *((sqrt(x)-3)^2/2+6(sqrt(x)-3)+9ln|(sqrt(x)-3)|)+C`


                                   ` =(sqrt(x)-3)^2+12(sqrt(x)-3)+18ln|(sqrt(x)-3)| +C`


                                   ` = x-6sqrt(x)+9+12sqrt(x)-36 +18ln|sqrt(x)-3|+C`


                                  `= x + 6sqrt(x)-27 +18ln|sqrt(x)-3|+C`







No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...