`int (x^2 - 5x + 16)/((2x + 1)(x - 2)^2) dx` Evaluate the integral

`int(x^2-5x+16)/((2x+1)(x-2)^2)dx2`


Let's first express the integrand as sum of proper rational expressions by applying partial fraction decomposition,


`(x^2-5x+16)/((2x+1)(x-2)^2)=A/(2x+1)+B/(x-2)+C/(x-2)^2`


`=(A(x-2)^2+B(2x+1)(x-2)+C(2x+1))/((2x+1)(x-2)^2)`


`=(A(x^2-4x+4)+B(2x^2-4x+x-2)+C(2x+1))/((2x+1)(x-2)^2)`


`=(A(x^2-4x+4)+B(2x^2-3x-2)+C(2x+1))/((2x+1)(x-2)^2)`


`=(x^2(A+2B)+x(-4A-3B+2C)+4A-2B+C)/((2x+1)(x-2)^2)`


Now equate the coefficients of the polynomial in the numerator on the both sides,


`A+2B=1` --------------------------------(1)


`-4A-3B+2C=-5`  -----------------(2)


`4A-2B+C=16`  ----------------------(3)


Now let's solve the above three equations by the method of substitution,


From equation 1 :`A=1-2B`


Substitute the above value of A in equation 2 ,


`-4(1-2B)-3B+2C=-5`


`-4+8B-3B+2C=-5`


`5B+2C=-5+4`


`5B+2C=-1`     ------------------------ (4)


Now...

`int(x^2-5x+16)/((2x+1)(x-2)^2)dx2`


Let's first express the integrand as sum of proper rational expressions by applying partial fraction decomposition,


`(x^2-5x+16)/((2x+1)(x-2)^2)=A/(2x+1)+B/(x-2)+C/(x-2)^2`


`=(A(x-2)^2+B(2x+1)(x-2)+C(2x+1))/((2x+1)(x-2)^2)`


`=(A(x^2-4x+4)+B(2x^2-4x+x-2)+C(2x+1))/((2x+1)(x-2)^2)`


`=(A(x^2-4x+4)+B(2x^2-3x-2)+C(2x+1))/((2x+1)(x-2)^2)`


`=(x^2(A+2B)+x(-4A-3B+2C)+4A-2B+C)/((2x+1)(x-2)^2)`


Now equate the coefficients of the polynomial in the numerator on the both sides,


`A+2B=1` --------------------------------(1)


`-4A-3B+2C=-5`  -----------------(2)


`4A-2B+C=16`  ----------------------(3)


Now let's solve the above three equations by the method of substitution,


From equation 1 :`A=1-2B`


Substitute the above value of A in equation 2 ,


`-4(1-2B)-3B+2C=-5`


`-4+8B-3B+2C=-5`


`5B+2C=-5+4`


`5B+2C=-1`     ------------------------ (4)


Now substitute the value of A in equation 3,


`4(1-2B)-2B+C=16`


`4-8B-2B+C=16`


`4-10B+C=16`


`-10B+C=16-4`


`-10B+C=12`    -----------------------(5)


Now solve the equations 4 and 5 by the method of elimination,


Multiply equation 4 by 2,


`10B+4C=-2`  ----------------------(6)


Now add the equations 5 and 6,


`5C=12-2=10`


`C=10/5=2`


Plug the value of C in equation 5.


`-10B+2=12`


`-10B=12-2=10`


`B=10/-10=-1`


Plug the value of B in equation 1.


`A+2(-1)=1`


`A-2=1`


`A=1+2=3`


`:.int(x^2-5x+6)/((2x+1)(x-2)^2)dx=int(3/(2x+1)+(-1)/(x-2)+2/(x-2)^2)dx`


`=3int1/(2x+1)dx-int1/(x-2)dx+2int1/(x-2)^2dx`


Now let's evaluate the above three integrals,


`int1/(2x+1)dx`


Let's apply the integral substitution:`u=2x+1`


`du=2dx`


`=int1/(2u)du`


`=1/2ln|u|`


Substitute back u=2x+1,


`=1/2ln|2x+1|`


Now let's evaluate `int1/(x-2)dx`


apply integral substitution: `v=x-2`


`dv=dx`


`=int1/vdv`


`=ln|v|`


substitute back v=x-2,


`=ln|x-2|`


Now let's evaluate integral `int1/(x-2)^2dx`


apply the integral substitution: t=x-2


`dt=dx`


`int1/t^2dt`


`=intt^-2dt`


`=t^(-2+1)/(-2+1)`


`=-1/t`


Substitute back t=x-2,


`=-1/(x-2)`


`:.int(x^2-5x+16)/((2x+1)(x-2)^2)dx=3(1/2ln|2x+1|)-1ln|x-2|+2(-1/(x-2))`


`=3/2ln|2x+1|-ln|x-2|-2/(x-2)+C`   where C is a constant


No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...