`int(x^2-5x+16)/((2x+1)(x-2)^2)dx2`
Let's first express the integrand as sum of proper rational expressions by applying partial fraction decomposition,
`(x^2-5x+16)/((2x+1)(x-2)^2)=A/(2x+1)+B/(x-2)+C/(x-2)^2`
`=(A(x-2)^2+B(2x+1)(x-2)+C(2x+1))/((2x+1)(x-2)^2)`
`=(A(x^2-4x+4)+B(2x^2-4x+x-2)+C(2x+1))/((2x+1)(x-2)^2)`
`=(A(x^2-4x+4)+B(2x^2-3x-2)+C(2x+1))/((2x+1)(x-2)^2)`
`=(x^2(A+2B)+x(-4A-3B+2C)+4A-2B+C)/((2x+1)(x-2)^2)`
Now equate the coefficients of the polynomial in the numerator on the both sides,
`A+2B=1` --------------------------------(1)
`-4A-3B+2C=-5` -----------------(2)
`4A-2B+C=16` ----------------------(3)
Now let's solve the above three equations by the method of substitution,
From equation 1 :`A=1-2B`
Substitute the above value of A in equation 2 ,
`-4(1-2B)-3B+2C=-5`
`-4+8B-3B+2C=-5`
`5B+2C=-5+4`
`5B+2C=-1` ------------------------ (4)
Now...
`int(x^2-5x+16)/((2x+1)(x-2)^2)dx2`
Let's first express the integrand as sum of proper rational expressions by applying partial fraction decomposition,
`(x^2-5x+16)/((2x+1)(x-2)^2)=A/(2x+1)+B/(x-2)+C/(x-2)^2`
`=(A(x-2)^2+B(2x+1)(x-2)+C(2x+1))/((2x+1)(x-2)^2)`
`=(A(x^2-4x+4)+B(2x^2-4x+x-2)+C(2x+1))/((2x+1)(x-2)^2)`
`=(A(x^2-4x+4)+B(2x^2-3x-2)+C(2x+1))/((2x+1)(x-2)^2)`
`=(x^2(A+2B)+x(-4A-3B+2C)+4A-2B+C)/((2x+1)(x-2)^2)`
Now equate the coefficients of the polynomial in the numerator on the both sides,
`A+2B=1` --------------------------------(1)
`-4A-3B+2C=-5` -----------------(2)
`4A-2B+C=16` ----------------------(3)
Now let's solve the above three equations by the method of substitution,
From equation 1 :`A=1-2B`
Substitute the above value of A in equation 2 ,
`-4(1-2B)-3B+2C=-5`
`-4+8B-3B+2C=-5`
`5B+2C=-5+4`
`5B+2C=-1` ------------------------ (4)
Now substitute the value of A in equation 3,
`4(1-2B)-2B+C=16`
`4-8B-2B+C=16`
`4-10B+C=16`
`-10B+C=16-4`
`-10B+C=12` -----------------------(5)
Now solve the equations 4 and 5 by the method of elimination,
Multiply equation 4 by 2,
`10B+4C=-2` ----------------------(6)
Now add the equations 5 and 6,
`5C=12-2=10`
`C=10/5=2`
Plug the value of C in equation 5.
`-10B+2=12`
`-10B=12-2=10`
`B=10/-10=-1`
Plug the value of B in equation 1.
`A+2(-1)=1`
`A-2=1`
`A=1+2=3`
`:.int(x^2-5x+6)/((2x+1)(x-2)^2)dx=int(3/(2x+1)+(-1)/(x-2)+2/(x-2)^2)dx`
`=3int1/(2x+1)dx-int1/(x-2)dx+2int1/(x-2)^2dx`
Now let's evaluate the above three integrals,
`int1/(2x+1)dx`
Let's apply the integral substitution:`u=2x+1`
`du=2dx`
`=int1/(2u)du`
`=1/2ln|u|`
Substitute back u=2x+1,
`=1/2ln|2x+1|`
Now let's evaluate `int1/(x-2)dx`
apply integral substitution: `v=x-2`
`dv=dx`
`=int1/vdv`
`=ln|v|`
substitute back v=x-2,
`=ln|x-2|`
Now let's evaluate integral `int1/(x-2)^2dx`
apply the integral substitution: t=x-2
`dt=dx`
`int1/t^2dt`
`=intt^-2dt`
`=t^(-2+1)/(-2+1)`
`=-1/t`
Substitute back t=x-2,
`=-1/(x-2)`
`:.int(x^2-5x+16)/((2x+1)(x-2)^2)dx=3(1/2ln|2x+1|)-1ln|x-2|+2(-1/(x-2))`
`=3/2ln|2x+1|-ln|x-2|-2/(x-2)+C` where C is a constant
No comments:
Post a Comment