Integrated `int10/[(x-1)(x^2+9)]dx`
Solve for the variables A, B, and, C using the method of partial fractions.
`10/[(x-1)(x^2+9)]=A/(x-1)+(Bx+C)/(x^2+9)`
`10=A(x^2+9)+(Bx+C)(x-1)`
`10=Ax^2+9A+Bx^2+Cx-Bx-C`
`10=(A+B)x^2+(C-B)x+(9A-C)`
Equate coefficients and solve for A, B, and C.
`0=A+B`
`A=-B`
`0=C-B`
`0=C+A`
`10=9A-C`
`0=A+C`
`10=10A`
`A=1`
`C=-1`
`B=-1`
`int10/[(x-1)(x^2+9)]dx=int[1/(x-1)+(-1x-1)/(x^2+9)]dx`
`=int1/(x-1)dx-intx/(x^2+9)dx-int1/(x^2+9)dx`
The first integral matches the form`int(du)/u=ln|u|+C`
`int1/(x-1)=ln|x-1|+C`
Integrate the second integral using u-substitution.
Let `u=x^2+9`
`(du)/dx=2x`
`dx=(du)/(2x)`
`-intx/(x^2+1)dx=-x/u*(du)/(2x)=-1/2ln|u|+C=-1/2ln|x^2+9|+C`
The third integral matches the form `int(dx)/(x^2+a^2)=1/atan^-1(x/a)+C`
`=-int1/(x^2+9)dx=-1/3tan^-1(x/3)+C`
`=int1/(x-1)dx-intx/(x^2+9)dx-int1/(x^2+9)dx `
`=ln|x-1|-1/2ln(x^2+9)-1/3tan^-1(x/3)+C`
...
Integrated `int10/[(x-1)(x^2+9)]dx`
Solve for the variables A, B, and, C using the method of partial fractions.
`10/[(x-1)(x^2+9)]=A/(x-1)+(Bx+C)/(x^2+9)`
`10=A(x^2+9)+(Bx+C)(x-1)`
`10=Ax^2+9A+Bx^2+Cx-Bx-C`
`10=(A+B)x^2+(C-B)x+(9A-C)`
Equate coefficients and solve for A, B, and C.
`0=A+B`
`A=-B`
`0=C-B`
`0=C+A`
`10=9A-C`
`0=A+C`
`10=10A`
`A=1`
`C=-1`
`B=-1`
`int10/[(x-1)(x^2+9)]dx=int[1/(x-1)+(-1x-1)/(x^2+9)]dx`
`=int1/(x-1)dx-intx/(x^2+9)dx-int1/(x^2+9)dx`
The first integral matches the form`int(du)/u=ln|u|+C`
`int1/(x-1)=ln|x-1|+C`
Integrate the second integral using u-substitution.
Let `u=x^2+9`
`(du)/dx=2x`
`dx=(du)/(2x)`
`-intx/(x^2+1)dx=-x/u*(du)/(2x)=-1/2ln|u|+C=-1/2ln|x^2+9|+C`
The third integral matches the form `int(dx)/(x^2+a^2)=1/atan^-1(x/a)+C`
`=-int1/(x^2+9)dx=-1/3tan^-1(x/3)+C`
`=int1/(x-1)dx-intx/(x^2+9)dx-int1/(x^2+9)dx `
`=ln|x-1|-1/2ln(x^2+9)-1/3tan^-1(x/3)+C`
The final answer is:
`=ln|x-1|-1/2ln(x^2+9)-1/3tan^-1(x/3)+C `
No comments:
Post a Comment