`int_1^2 (4y^2 - 7y - 12)/(y(y + 2)(y - 3)) dy` Evaluate the integral

`int_1^2 (4y^2-7y-12)/(y(y+2)(y-3))dy`


To solve this, apply partial fraction decomposition. 


When converting the integrand to sum of proper rational expressions, set the equation as follows:


`(4y^2-7y-12)/(y(y+2)(y-3))= A/y + B/(y+2)+C/(y-3)`


Multiply both sides by the LCD.


`4y^2-7y-12=A(y+2)(y-3)+By(y-3)+Cy(y+2)`


`4y^2-7y-12=Ay^2-Ay-6A+By^2-3By+Cy^2+2Cy`


`4y^2-7y-12=(A+B+C)y^2+(-A-3B+2C)Y-6A`


For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the polynomials equal to each other.


y^2:


`4=A+B+C`     (Let this be EQ1.)


y:


`-7=-A-3B+2C`     (Let...

`int_1^2 (4y^2-7y-12)/(y(y+2)(y-3))dy`


To solve this, apply partial fraction decomposition. 


When converting the integrand to sum of proper rational expressions, set the equation as follows:


`(4y^2-7y-12)/(y(y+2)(y-3))= A/y + B/(y+2)+C/(y-3)`


Multiply both sides by the LCD.


`4y^2-7y-12=A(y+2)(y-3)+By(y-3)+Cy(y+2)`


`4y^2-7y-12=Ay^2-Ay-6A+By^2-3By+Cy^2+2Cy`


`4y^2-7y-12=(A+B+C)y^2+(-A-3B+2C)Y-6A`


For the two sides to be equal, the two polynomials should be the same. So set the coefficients of the polynomials equal to each other.


y^2:


`4=A+B+C`     (Let this be EQ1.)


y:


`-7=-A-3B+2C`     (Let this be EQ2.)


Constant:


`-12=-6A`     (Let this be EQ3.)


To solve for the value of A, consider EQ3.


`-12=-6A`


`2=A`


Plug-in this value of A to EQ1.


`4=A+B+C`


`4=2+B+C`


`2=B+C`


Then, isolate the C.


`2-B=C`


Plug-in this expression and the value of A to EQ2.


`-7=-A-3B+2C`


`-7=-2-3B+2(2-B)`


`-7=-2-3B+4-2B`


`-7=2-5B`


`-9=-5B`


`9/5=B`


And plug-in the value of A and B to EQ1.


`4=A+B+C`


`4=2+9/5+C`


`4=19/5+C`


`1/5=C`


So the partial fraction decomposition of the integrand is:


`(4y^2-7y-12)/(y(y+2)(y-3))= 2/y + (9/5)/(y+2)+(1/5)/(y-3)=2/y+9/(5(y+2))+1/(5(y-3))`


Taking the integral of this result to:


`int_1^2 (4y^2-7y-12)/(y(y+2)(y-3))dy`


`=int_1^2 (2/y+9/(5(y+2))+1/(5(y-3)))dy`


`= 2int_1^2 1/ydy + 9/5int_1^2 1/(y+2)dy+1/5int_1^2 1/(y-3)dy`


`=(2ln|y| + 9/5ln|y+2| + 1/5ln|y-3|)|_1^2`


`= (2ln|2| +9/5ln|2+2| +1/5ln|2-3|)-(2ln|1| + 9/5ln|1+2|+1/5ln|1-3|)`


`=(2ln|2|+9/5ln|4|+1/5ln|-1|) - (2ln|1|+9/5ln|3|+1/5ln|-2|)`


`=(2ln2+9/5ln2^2+1/5ln1) - (2ln1+9/5ln3+1/5ln2)`


`=(2ln2+18/5ln2+0)-(0+9/5ln3+1/5ln2)`


`=28/5ln2-(9/5ln3+1/5ln2)`


`=28/5ln2-9/5ln3-1/5ln2`


`=27/5ln2-9/5ln3`


`=9/5(3ln2-ln3)`


`=9/5(ln2^3-ln3)`


`=9/5(ln8-ln3)`


`=9/5ln(8/3)`


Therefore,  `int_1^2 (4y^2-7y-12)/(y(y+2)(y-3))dy=9/5ln(8/3)` .

No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...