`y=lnsqrt[(x+1)/(x-1)]`
`y=ln(x+1)^(1/2)-ln(x-1)^(1/2)`
`y=1/2ln(x+1)-1/2ln(x-1)`
` ` `y'=1/[2(x+1)]-1/[2(x-1)]`
`y'=[(x-1)-(x+1)]/[2(x+1)(x-1)]`
`y'=[x-1-x-1]/[2(x+1)(x-1)]`
`y'=-1/[(x+1)(x-1)]`
The derivative of the function y is `-1/[(x+1)(x-1)].`
``
`y=lnsqrt[(x+1)/(x-1)]`
`y=ln(x+1)^(1/2)-ln(x-1)^(1/2)`
`y=1/2ln(x+1)-1/2ln(x-1)`
` ` `y'=1/[2(x+1)]-1/[2(x-1)]`
`y'=[(x-1)-(x+1)]/[2(x+1)(x-1)]`
`y'=[x-1-x-1]/[2(x+1)(x-1)]`
`y'=-1/[(x+1)(x-1)]`
The derivative of the function y is `-1/[(x+1)(x-1)].`
``
No comments:
Post a Comment