`y=ln(sqrt(x^2-4))`
First, use the formula:
`(lnu)'= 1/u*u'`
Applying that formula, the derivative of the function will be:
`y' =1/sqrt(x^2-4) * (sqrt(x^2-4))'`
To take the derivative of the inner function, express the radical in exponent form.
`y'=1/sqrt(x^2-4)*((x^2-4)^(1/2))'`
Then, use the formula:
`(u^n)'=n*u^(n-1) * u'`
So, y' will become:
`y'=1/sqrt(x^2-4) * 1/2(x^2-4)^(-1/2)*(x^2-4)'`
To take the derivative of the innermost function, use the formulas:
`(x^n)'=n*x^(n-1)`
`(c)' = 0`
Applying these two formulas, y' will become:
`y'=1/sqrt(x^2-4) *1/2(x^2-4)^(-1/2)*(2x-0)`
Simplifying...
`y=ln(sqrt(x^2-4))`
First, use the formula:
`(lnu)'= 1/u*u'`
Applying that formula, the derivative of the function will be:
`y' =1/sqrt(x^2-4) * (sqrt(x^2-4))'`
To take the derivative of the inner function, express the radical in exponent form.
`y'=1/sqrt(x^2-4)*((x^2-4)^(1/2))'`
Then, use the formula:
`(u^n)'=n*u^(n-1) * u'`
So, y' will become:
`y'=1/sqrt(x^2-4) * 1/2(x^2-4)^(-1/2)*(x^2-4)'`
To take the derivative of the innermost function, use the formulas:
`(x^n)'=n*x^(n-1)`
`(c)' = 0`
Applying these two formulas, y' will become:
`y'=1/sqrt(x^2-4) *1/2(x^2-4)^(-1/2)*(2x-0)`
Simplifying it will result to:
`y'=1/sqrt(x^2-4)*1/2(x^2-4)^(-1/2)*2x`
`y'=1/sqrt(x^2-4)*1/2*1/(x^2-4)^(1/2)*2x`
`y'=1/sqrt(x^2-4)*1/2*1/sqrt(x^2-4)*2x`
`y'=x/(x^2-4)`
Therefore, the derivative of the given function is `y'=x/(x^2-4)` .
No comments:
Post a Comment