`y = ln(sqrt(x^2 - 4))` Find the derivative of the function.

`y=ln(sqrt(x^2-4))`


First, use the formula:


`(lnu)'= 1/u*u'`


Applying that formula, the derivative of the function will be:


`y' =1/sqrt(x^2-4) * (sqrt(x^2-4))'`


To take the derivative of the inner function, express the radical in exponent form.


`y'=1/sqrt(x^2-4)*((x^2-4)^(1/2))'`


Then, use the formula:


`(u^n)'=n*u^(n-1) * u'`


So, y' will become:


`y'=1/sqrt(x^2-4) * 1/2(x^2-4)^(-1/2)*(x^2-4)'`


To take the derivative of the innermost function, use the formulas:


`(x^n)'=n*x^(n-1)`


`(c)' = 0`


Applying these two formulas, y' will become:


`y'=1/sqrt(x^2-4) *1/2(x^2-4)^(-1/2)*(2x-0)`


Simplifying...

`y=ln(sqrt(x^2-4))`


First, use the formula:


`(lnu)'= 1/u*u'`


Applying that formula, the derivative of the function will be:


`y' =1/sqrt(x^2-4) * (sqrt(x^2-4))'`


To take the derivative of the inner function, express the radical in exponent form.


`y'=1/sqrt(x^2-4)*((x^2-4)^(1/2))'`


Then, use the formula:


`(u^n)'=n*u^(n-1) * u'`


So, y' will become:


`y'=1/sqrt(x^2-4) * 1/2(x^2-4)^(-1/2)*(x^2-4)'`


To take the derivative of the innermost function, use the formulas:


`(x^n)'=n*x^(n-1)`


`(c)' = 0`


Applying these two formulas, y' will become:


`y'=1/sqrt(x^2-4) *1/2(x^2-4)^(-1/2)*(2x-0)`


Simplifying it will result to:


`y'=1/sqrt(x^2-4)*1/2(x^2-4)^(-1/2)*2x`


`y'=1/sqrt(x^2-4)*1/2*1/(x^2-4)^(1/2)*2x`


`y'=1/sqrt(x^2-4)*1/2*1/sqrt(x^2-4)*2x`


`y'=x/(x^2-4)`



Therefore, the derivative of the given function is `y'=x/(x^2-4)` . 

No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...