`int (x^3 + 2x^2 + 3x - 2)/(x^2 + 2x + 2)^2 dx` Evaluate the integral

Given to solve


`int (x^3+2x^2+3x-2)/((x^2+2x+2)^2) dx`


but first we have to find this


`(x^3+2x^2+3x-2)/((x^2+2x+2)^2) `


= `(x^3+2x^2+2x+x-2)/((x^2+2x+2)^2) `


= `(x(x^2+2x+2)+x-2)/((x^2+2x+2)^2)`


=`(x(x^2+2x+2))/((x^2+2x+2)^2)+(x-2)/((x^2+2x+2)^2)`


= `x/(x^2+2x+2) +(x-2)/((x^2+2x+2)^2)`


`(x^3+2x^2+3x-2)/((x^2+2x+2)^2) = x/(x^2+2x+2) + (x-2)/((x^2+2x+2)^2) `


Integrating both sides we get:


`int (x^3+2x^2+3x-2)/((x^2+2x+2)^2) dx = int x/(x^2+2x+2) dx + int (x-2)/((x^2+2x+2)^2) dx`


first let us solve,


` int x/(x^2+2x+2) dx`



= `int (x+1-1)/((x+1)^2+1) dx`


`int (x+1)/((x+1)^2+1) dx +int (-1)/((x+1)^2+1) dx`


as we know


` int u/(u^ +1) dx= (ln(u^2+1))/2`



...

Given to solve


`int (x^3+2x^2+3x-2)/((x^2+2x+2)^2) dx`


but first we have to find this


`(x^3+2x^2+3x-2)/((x^2+2x+2)^2) `


= `(x^3+2x^2+2x+x-2)/((x^2+2x+2)^2) `


= `(x(x^2+2x+2)+x-2)/((x^2+2x+2)^2)`


=`(x(x^2+2x+2))/((x^2+2x+2)^2)+(x-2)/((x^2+2x+2)^2)`


= `x/(x^2+2x+2) +(x-2)/((x^2+2x+2)^2)`


`(x^3+2x^2+3x-2)/((x^2+2x+2)^2) = x/(x^2+2x+2) + (x-2)/((x^2+2x+2)^2) `


Integrating both sides we get:


`int (x^3+2x^2+3x-2)/((x^2+2x+2)^2) dx = int x/(x^2+2x+2) dx + int (x-2)/((x^2+2x+2)^2) dx`


first let us solve,


` int x/(x^2+2x+2) dx`



= `int (x+1-1)/((x+1)^2+1) dx`


`int (x+1)/((x+1)^2+1) dx +int (-1)/((x+1)^2+1) dx`


as we know


` int u/(u^ +1) dx= (ln(u^2+1))/2`



and `int 1/(u^2+1)dx=tan^(-1) u `


so ,


`int x/(x^2+2x+2) dx`


=`int (x+1)/((x+1)^2+1) dx -int (1)/((x+1)^2+1) dx`


=`(ln((x+1)^2+1))/2 -tan^(-1) (x+1) `




 and now we have to solve ,


` int (x-2)/((x^2+2x+2)^2) dx`



this can be solved by integration by parts so,


`int uv'= uv-int u'v`



let` u= x-2 and v' = 1/((x^2+2x+2)^2)`


=>` u' = 1 `


so, `v=int 1/((x^2+2x+2)^2) dx`


=`int 1/((x+1)^2+1)^2 dx`


let `u = x+1 , du =dx`


= `int 1/((u)^2+1)^2 du`


and now` u= tan(theta) so , du = (sec^2 (theta) ) d theta`


so ,


=>`int 1/((u)^2+1)^2 du`


=>`int 1/((tan(theta))^2+1)^2 (sec^2 (theta) ) d theta`


=>`int (sec^2 (theta) ) /((tan(theta))^2+1)^2 d theta`


=>`int (sec^2 (theta) ) /(sec^2(theta))^2 d theta`


=>`int cos^2 (theta) d theta`


=> we now that `int cos^2 t dt = (1/2)(t+(1/2)(sin(2t)))`


so ,


`int cos^2 (theta) d theta = (1/2)(theta+(1/2)(sin(2(theta))))`



Now ,


` int 1/((x+1)^2+1)^2 dx = (1/2)(theta+(1/2)(sin(2(theta))))`



but `u= tan(theta) and x+1 = u`


so ,


V


`=int 1/((x+1)^2+1)^2 dx= (1/2)(theta+(1/2)(sin(2(theta)))) =(1/2)(tan^(-1) (x+1) +(1/2)(sin(2(tan^(-1)(x+1)))))`




now , as per `int uv' = uv -int u'v`


` int (x-2)/((x^2+2x+2)^2) dx`



= `[(x-2)((1/2)(tan^(-1) (x+1) +(1/2)(sin(2(tan^(-1)(x+1))))))] `



`- int (1)((1/2)(tan^(-1) (x+1) +(1/2)(sin(2(tan^(-1)(x+1)))))) dx`




now let us find the value of


`int (1)((1/2)(tan^(-1) (x+1) +(1/2)(sin(2(tan^(-1)(x+1)))))) dx`


=`int ((1/2)(tan^(-1) (x+1) )dx+int ((1/4)(sin(2(tan^(-1)(x+1)))))) dx`


= > let `tan^-1 (x+1) = u`


`tan u = x+1`


=> sec^2(u) = dx


so,


=`int ((1/2)(tan^(-1) (x+1) )+((1/4)(sin(2(tan^(-1)(x+1)))))) dx`


= =`int ((1/2)(u)+((1/4)(sin(2u)))) sec^2(u) du`


= `int (u/2 + sin(2u)/4 )sec^(2u) du `


=`1/2(utanu +ln(cosu))-1/4 ln(cos2u +1)`


= `1/2((x+1)(tan^(-1)(x+1)) +ln(cos(tan^(-1)(x+1))))-1/4 ln(cos2(tan^(-1)(x+1)) +1)`


so, now ,


`int (x^3+2x^2+3x-2)/((x^2+2x+2)^2) dx `


=` (ln((x+1)^2+1))/2 -tan^(-1) (x+1) +[(x-2)((1/2)(tan^(-1) (x+1) +(1/2)(sin(2(tan^(-1)(x+1))))))]`


`-1/2((x+1)(tan^(-1)(x+1)) +ln(cos(tan^(-1)(x+1))))-1/4 ln(cos2(tan^(-1)(x+1)) +1)`

No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...