`int 1/(1 + sqrt(2x)) dx` Find the indefinite integral by u substitution. (let u be the denominator of the integral)

Solving for indefinite integral using u-substitution follows:


`int f(g(x))*g'(x) dx = int f(u) du` where we let` u = g(x)` .


In this case, it is stated that to let u be the denominator of integral which means let:


`u = 1+sqrt(2x).`


This can be rearrange into `sqrt(2x) = u -1`


Finding the derivative of u :  `du = 1/sqrt(2x) dx`


Substituting `sqrt(2x)= u-1` into `du = 1/sqrt(2x)dx` becomes:


`du = 1/(u-1)dx`


Rearranged into `(u-1)...

Solving for indefinite integral using u-substitution follows:


`int f(g(x))*g'(x) dx = int f(u) du` where we let` u = g(x)` .


In this case, it is stated that to let u be the denominator of integral which means let:


`u = 1+sqrt(2x).`


This can be rearrange into `sqrt(2x) = u -1`


Finding the derivative of u :  `du = 1/sqrt(2x) dx`


Substituting `sqrt(2x)= u-1` into `du = 1/sqrt(2x)dx` becomes:


`du = 1/(u-1)dx`


Rearranged into `(u-1) du =dx`


Applying u-substitution using` u = 1+sqrt(2x) `  and `(u-1)du = du` :


`int 1/(1+sqrt(2x)) dx = int (u-1)/u *du`


Express into two separate fractions:


`int (u-1)/u *du = int ( u/u -1/u)du`


                      ` = int (1 - 1/u)du`


Applying `int (f(x) -g(x))dx = int f(x) dx - int g(x) dx` :


`int (1 - 1/u)du = int 1 du - int 1/udu`


                       `= u - ln|u| +C`


Substitute `u = 1+sqrt(2x) `  to the `u - ln|u| +C` :


`u - ln|u| +C =1+sqrt(2x) -ln|1+sqrt(2x) |+C`





No comments:

Post a Comment

What are the problems with Uganda's government?

Youth unemployment and corruption are two problems that face the Ugandan government. Modern governments all over the world face many problem...