`g(t)=ln(t)/t^2`
Find the derivative of the function using the quotient rule.
`g'(t)={t^2[1/t]-ln(t)[2t]}/t^4`
`g'(t)=[t-2tln(t)]/t^4`
`g'(t)=(t(1-2ln(t)))/t^4`
`g'(t)=(1-2ln(t))/t^3`
The derivative of g(t) is `(1-2ln(t))/t^3.`
`g(t)=ln(t)/t^2`
Find the derivative of the function using the quotient rule.
`g'(t)={t^2[1/t]-ln(t)[2t]}/t^4`
`g'(t)=[t-2tln(t)]/t^4`
`g'(t)=(t(1-2ln(t)))/t^4`
`g'(t)=(1-2ln(t))/t^3`
The derivative of g(t) is `(1-2ln(t))/t^3.`
No comments:
Post a Comment